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Abstract

Background: While methylation of CpG dinucleotides is traditionally considered
antagonistic to the DNA-binding activity of most transcription factors (TFs), recent
in vitro studies have revealed a more complex picture, suggesting that over a third
of TFs may preferentially bind to methylated sequences. Expanding these in vitro
observations to in vivo TF binding preferences is challenging since the effect of
methylation of individual CpG sites cannot be easily isolated from the confounding
effects of DNA accessibility and regional DNA methylation. Thus, in vivo methylation
preferences of most TFs remain uncharacterized.

Results: We introduce joint accessibility-methylation-sequence (JAMS) models, which
connect the strength of the binding signal observed in ChIP-seq to the DNA
accessibility of the binding site, regional methylation level, DNA sequence, and base-
resolution cytosine methylation. We show that JAMS models quantitatively explain
TF occupancy, recapitulate cell type-specific TF binding, and have high positive
predictive value for identification of TFs affected by intra-motif methylation. Analysis
of 2209 ChIP-seq experiments results in high-confidence JAMS models for 260 TFs,
revealing a negative association between in vivo TF occupancy and intra-motif
methylation for 45% of studied TFs, as well as 16 TFs that are predicted to bind to
methylated sites, including 11 novel methyl-binding TFs mostly from the multi-zinc
finger family.

Conclusions: Our study substantially expands the repertoire of in vivo methyl-
binding TFs, but also suggests that most TFs that prefer methylated CpGs in vitro
present themselves as methylation agnostic in vivo, potentially due to the balancing
effect of competition with other methyl-binding proteins.

Background
Transcription factors (TFs) are key regulators of gene expression. Each TF usually rec-

ognizes a specific sequence motif; however, TF binding is affected by several other vari-

ables, among which cytosine methylation is traditionally viewed as having a repressive

effect on TF binding [1]. However, this traditional view is gradually changing, as more

examples are reported of TFs that bind to methylated sequences. These include studies
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that have reported increased binding of specific TFs to methylated DNA in vitro [2], in

addition to reports indicating that, for some TFs, a large fraction of their in vivo bind-

ing sites is highly methylated [3, 4].

While it is tempting to view these anecdotal cases as exceptions rather than a general

trend, a recent systematic analysis of TF CpG methylation preferences revealed that, in

fact, a large fraction of TFs may bind to methylated CpGs in vitro. Based on this study,

the effect of methylation is dependent on its position in the binding site and is hetero-

geneous within and across TF families [5]. While this study provides in vitro evidence

for widespread recognition of methylated CpGs by TFs, a comparable systematic ana-

lysis of in vivo methylation preferences of TFs is still lacking. This is primarily because

observing the specific in vivo effect of intra-motif CpG methylation is confounded by

binding site-specific factors such as DNA accessibility, regional methylation level, and

binding site sequence [6–8]. Experimental approaches to control these confounding

factors are complicated and resource-exhaustive [9–11], highlighting the need for com-

putational methods to untangle, from these confounding variables, the base-resolution

relationship between TF binding occupancy and intra-motif CpG methylation.

A few recent studies have proposed computational methods to identify TFs that are

affected by CpG methylation in vitro. These include efforts to better distinguish bound

from unbound sequences using TF binding models that incorporate CpG methylation

status [12, 13], as well as tools that expand the ATGC alphabet by adding symbols for

methylated cytosines in order to perform methylation-aware de novo motif discovery

[14, 15]. These methods, however, only report whether methylation improves TF bind-

ing prediction without delineating the direction of the effect [13], lack the resolution to

investigate the effect of methylation of individual intra-motif cytosines [13], and/or do

not consider the confounding effects of DNA accessibility and regional methylation

level [12–15]. As a result, even some of the most classic methyl-binding TFs, such as

CEBPB [2] and KAISO [16], are not detected by these methods [12].

To overcome these challenges, we introduce Joint Accessibility-Methylation-

Sequence models (JAMS), a statistical framework for deconvolving the individual con-

tribution of various factors, including intra-motif CpG methylation, on the in vivo

strength of TF binding as observed by ChIP-seq. We show that JAMS models are re-

producible and generalizable, can capture known CpG methyl preferences of TFs, and

can even predict differential TF binding across cell lines based on changes in intra-

motif CpG methylation. Finally, we apply JAMS to a large compendium of ChIP-seq ex-

periments to systematically explore the CpG methylation preferences of TFs across dif-

ferent families.

Results
Modeling the joint effect of accessibility, methylation, and sequence on TF binding

Several factors work together to determine TF occupancy for a specific binding site.

First, the sequence of the binding site determines the TF affinity, given that the major-

ity of TFs are sequence-specific. Secondly, for most TFs, the existing level of DNA ac-

cessibility heavily influences TF binding [7, 8]. Thirdly, regional methylation outside

the TFBS may affect TF occupancy, for example by recruiting Methyl-CpG-binding do-

main (MBD) proteins, which in turn recruit chromatin remodelers [6]. Therefore, in
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order to examine the specific effect of methylation of the TFBS on TF binding affinity,

we need to jointly model it together with these confounding factors.

For this purpose, we developed Joint Accessibility-Methylation-Sequence models

(JAMS), which quantitatively explain both the pulldown and background signal in

ChIP-seq experiments (https://github.com/csglab/JAMS). The JAMS model for each

ChIP-seq experiment considers the pulldown read density as a combination of a back-

ground signal and a TF-specific signal. On the other hand, the read count profiles ob-

tained from control experiments (e.g., input DNA) purely reflect the background signal

(Fig. 1A). Each of the background and TF-specific signals, in turn, is modeled as a func-

tion of the peak sequence, chromatin accessibility profile along the peak, regional

methylation level, and base-resolution intra-motif CpG methylation (Fig. 1B,C). JAMS

converts these associations into a generalized linear model, whose parameters can be

inferred by fitting simultaneously to both pulldown and control read counts. To ensure

log λctrl      = X×β bg + sctrl

log λpulldown = X×β bg + X×β tf + spulldown

nctrl       ~ NB(λctrl,φ)
npulldown ~ NB(λpulldown,φ)

Observed
tag counts

Log-predicted
tag counts

Matrix of accessibility-
methylation-sequence features

(one row per genomic region) Background
model coefficients

TF-binding
model
coefficients

Experiment-specific
size factors

= Background signal

= TF signal

Pull-downControl

log λi
ctrl = f bg(Ai,Mi,Si) log λi 

pulldown = f bg(Ai,Mi,Si) + f tf(Ai,Mi,Si)

CpG methylation
level

CpG indicator

Sequence

DNA accessibility per bin

200 bp

Most likely site for TF binding

Average flanking
base composition
and CpG methylation

Average flanking
base composition
and CpG methylation

pb02 pb02

P
re

di
ct

or
 v

ar
ia

bl
es

 (
X

)

Tag count in pull-down (ni
pulldown)

Tag count in control (ni
ctrl)

800 bpR
es

po
ns

e 
va

ria
bl

es

A

B
C

D

0

+1

+2

–1

–2 0 +2

Predicted TF binding (X×β tf)
10-fold cross-validation

O
bs

er
ve

d 
T

F
 b

in
di

ng
(lo

g 
pu

ll-
do

w
n 

to
 c

tr
l r

at
io

)

r = 0.69

E

F

–6

–4

–2

+4

+2

0

+6

S
E

LE
X

 Δ
ΔG

/R
T

0

+0.1

+0.2

–0.1

–0.2

T
F

 b
in

di
ng

 m
od

el
co

ef
fic

ie
nt

s

0

+0.1

+0.2

–0.1

–0.2

B
ac

kg
ro

un
d 

m
od

el
co

ef
fic

ie
nt

s

G
TFBS

–800 –400 +400 +800

0.3

0.2

0.1

0

0.4

D
N

A
 a

cc
es

si
bi

lit
y 

co
ef

fic
ie

nt

FDR ≤ 0.1
FDR > 0.1

Background
TF binding

H

Fig. 1 Overview of JAMS model. A At each genomic region i, the JAMS model considers the control tag
count (left) or the pulldown tag count (right) as a combination of background and/or TF-binding signals at
that position. B Each of these signals are then modeled as a function of accessibility (Ai), methylation (Mi),
and sequence (Si) at each region i. C Schematic summary of the predictor features extracted for each
genomic location and the outcome variables. D The specifications of the generalized linear model used by
JAMS. E Comparison between the observed and predicted CTCF binding signal in HEK293 cells [17]. F DNA
accessibility coefficients learned by the CTCF JAMS model; each dot corresponds to the effect of
accessibility at a 200 bp-bin. G Sequence motif logos representing the TF-binding specificity learned by
JAMS (left) and the effect of sequence on the background signal (right). JAMS motif logos are plotted using
ggseqLogo [18], with letter heights representing model coefficients. H The known CTCF binding preference
(based on SELEX [19]); SELEX motif logo was obtained from the CIS-BP database [20].
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that JAMS can correctly learn the features associated with both TF-specific and back-

ground signals, we fit the model to the read counts across peaks with a wide range of

pulldown-to-control signal ratio. These include not only the peaks that have signifi-

cantly high pulldown signal, but also peaks with low pulldown signal as well as genomic

locations with significantly high background signal. For model fitting, an appropriate

error model is needed that connects the expected (predicted) signal at each peak to the

observed read counts—we use negative binomial with a log-link function in this work

(Fig. 1D; see “Methods” for details).

In order to examine the ability of JAMS models to recover the in vivo binding prefer-

ences of TFs, we first applied it to ChIP-seq data from CTCF, a widely studied TF that

is constitutively expressed across cell lines and tissues [21, 22] and has a long residence

time on DNA [23]. We initially focused on the cell line HEK293 and generated a JAMS

model of CTCF binding in this cell line using previously published ChIP-seq [17],

WGBS [24], and chromatin accessibility data [25] (“Methods”). To evaluate the per-

formance of the JAMS model, we used 10-fold cross-validation and examined the cor-

relation between the predicted TF-specific signal and the observed pulldown-to-control

signal ratio across the peak regions. As Fig. 1E shows, the JAMS model predictions cor-

relate strongly with the pulldown-to-control signal ratio (Pearson r = 0.69, P < 10−16),

suggesting that accessibility-methylation-sequence features can quantitatively predict

CTCF occupancy.

Examining the coefficients of the fitted JAMS model, we observed that DNA accessi-

bility, especially at the peak center, has a strong effect on the TF-specific signal (which

only affects the pulldown read count), but limited effect on the background ChIP-seq

signal (which affects both the control and pulldown read counts; Fig. 1F). Nonetheless,

the effect on background signal was still statistically significant (likelihood ratio test P <

10−10), consistent with previously observed bias of DNA sonication toward accessible

chromatin regions [26]. Importantly, sequence features at the TF binding site are

strongly predictive of CTCF occupancy, while they have limited and diffuse effect on

the background signal (Fig. 1G). The sequence model learned by JAMS is highly corre-

lated with the known motif for CTCF (r = 0.86, P < 10−16, Fig. 1H and Additional file

1: Fig S1), suggesting that JAMS models can recapitulate the underlying biology of TF

binding.

JAMS models reveal the contribution of CpG methylation to TF binding

By jointly considering the contribution of accessibility, methylation, and sequence

to TF binding, JAMS models should be able to deconvolve the specific effect of

methylation from the confounding effect of other variables. To begin to explore

this possibility, we examined the JAMS model of CTCF. For this purpose, in

addition to the widely used sequence motif logos, we developed “dot plot logos” to

enable easier visual inspection of JAMS coefficients that correspond to sequence

and methylation effects. As Fig. 2A shows, the JAMS model of CTCF binding in

HEK293 cells suggests that methylation of C2pG3 and C12pG13 of the binding site

has a significantly negative effect (Wald test P < 10−24) on CTCF binding (but not

on the background signal; Additional file 1: Fig S2A-B); this relationship can be re-

capitulated even after removing loci with ambiguous (intermediate) methylation
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status (Additional file 1: Fig S2C). In other words, while a large fraction of CTCF

binding sites have CpGs at positions 2/3 and 12/13, CTCF preferentially binds

when these CpGs are not methylated.

To ensure that this observation is not confounded by other variables such as accessi-

bility and the average local methylation level, we also trained JAMS models with all the

variables except the CpG methylation level at each binding site position; we then com-

pared these reduced models to the full model using a likelihood ratio test. This analysis

revealed that removing the information about methylation levels of C2pG3 or

C12pG13 significantly reduces the fit of the model to the observed data (likelihood ra-

tio test P < 10−14; Additional file 1: Fig S3). Therefore, the CpG methylation level in

these positions is informative about CTCF binding signal even after considering the ef-

fect of other confounding variables such as sequence, accessibility, and the average

methylation of flanking regions. The independent effect of CpG methylation on CTCF

binding can also be observed after stratification of CTCF peaks based on the confound-

ing variables. Specifically, we repeated the JAMS modeling after removing the variables

that represent the TF-specific contribution of methylation at dinucleotides C2pG3 and

C12pG13, and sorted the peaks by the residual of this model (i.e., by the ChIP-seq sig-

nal that could not be explained by the reduced model). As Fig. 2B shows, even if we

focus on the peaks with similar DNA sequence and accessibility, the residual of the re-

duced model still correlates negatively with CpG methylation at positions 2/3 (Pearson

r = −0.14, P < 0.001) and 12/13 (r = −0.15, P < 0.001). In other words, peaks whose
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Fig. 2 CpG methylation preference of CTCF in HEK293 cells. A Motif logo and dot plot representations of
the sequence/methylation preference of CTCF. The logo (top) shows methylation coefficients as arrows,
with the arrow length proportional to the mean estimate of methylation effect. The dot plot (bottom)
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signal is smaller than what the reduced model predicts have higher CpG methylation,

supporting the negative association of CpG methylation with CTCF binding. Import-

antly, our observation that CpG methylation negatively affects CTCF binding is consist-

ent with previous reports on CTCF methylation preferences in vivo [27], with the

negative effect of mC2pG3 on CTCF binding also reported by in vitro studies [28]. We

note, however, that the predicted effect of methylation of C12pG13 is not currently

supported by in vitro data (see “Discussion”). Our results are also reproducible across

different cell lines, as we obtained similar JAMS models using CTCF ChIP-seq, WGBS,

and accessibility data from several other cell lines (Additional file 1: Fig S4).

Differential TF binding across cell lines can be explained using JAMS models

A model that encodes the intrinsic binding preference of a TF should be able to predict

the ChIP-seq signal of that TF in new contexts, such as in previously unseen cell types

that were not used in model training. We began to examine this possibility by investi-

gating the transferability of the CTCF model that was learned in HEK293 cells to other

cell types. We used DNase-seq and WGBS data (“Methods”) from six cell lines (H1,

GM12878, HeLa-S3, HepG2, and K562) to predict the CTCF binding signal (using the

HEK293-trained JAMS model), and compared the predictions to experimental CTCF

ChIP-seq data obtained for each cell type. We observed that the CTCF JAMS model

that was trained on HEK293 data could predict the ChIP-seq pulldown-to-control ratio

in other cell types with a mean Pearson r = 0.62 and mean R2 = 0.38 (compared to 10-

fold cross-validation r = 0.69 and R2 = 0.47 when applied to HEK293 data; Table 1).

These results support the transferability of JAMS models across cell types.

The above analysis shows that the JAMS models learned from one cell type can be

transferred to another cell type. However, the majority of CTCF binding sites are

shared across different cell types; therefore, it is not immediately clear to what extent

this transferability corresponds to cell-invariant features of the JAMS model (sequence)

as opposed to potentially cell type-specific features (methylation and accessibility). In

fact, one of the most challenging aspects of modeling TF binding is the ability to iden-

tify TF binding sites that are differentially occupied across cell types [29, 30]. To under-

stand the extent to which differential accessibility and methylation of DNA drives

differential CTCF binding, and the extent to which these effects can be captured by

JAMS, we decided to use the JAMS model learned from HEK293 cells to predict differ-

ential binding of CTCF in other cell lines. We started by identification of differentially

Table 1 Pearson correlation (r) between observed and predicted CTCF binding across cell types.
The third column shows r between observed and cross-validated JAMS predictions for models that
were trained on each individual cell type. The fourth column shows the r between the predictions
of the JAMS model that was trained on HEK293 and the observed ChIP-seq data in other cell lines

Cell line ChIP-seq peaks (n) 10-fold CV HEK293-trained r

HEK293 135,717 0.69 –

H1 128,123 0.72 0.62

GM12878 39,535 0.69 0.54

HeLa-S3 65,865 0.72 0.60

HepG2 81,188 0.73 0.64

K562 85,122 0.74 0.68
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bound CTCF peaks in pairwise comparisons of cell lines listed in Table 1. For any given

two cell lines, we used the log-fold change (log-fc) in the pulldown-to-control ratio as

the measure of differential binding (Fig. 3A). The mean and standard error of mean

(SEM) of this metric was calculated using a statistical model that assumes a negative bi-

nomial distribution for the tag counts, which also allows us to calculate a P-value for

the null hypothesis that log-fc is equal to zero (see “Methods”). Application of this

method to all pairwise cell comparisons revealed the largest number of statistically sig-

nificant (FDR < 0.1) differential CTCF peaks between GM12878 and HeLa-S3 cells (Fig.

3B); therefore, we focused on prediction of the differential peaks between these two cell

lines using the HEK293 JAMS model of CTCF. Specifically, we used the JAMS model

to predict the CTCF binding signal in each of the GM12878 and HeLa-S3 cell lines

(based on the accessibility and methylation data of each cell line) and then calculated

the difference of the JAMS predictions (in log-scale) between the two cells. As shown

in Fig. 3C, the JAMS-predicted changes in CTCF binding are strongly correlated with

the experimental log-fc values (r = 0.40, P < 10−100, across peaks with log-fc standard

error of mean < 1.28; see Additional file 1: Fig S5 for details on the choice of cutoff).

These results suggest that the CTCF JAMS model can quantitatively predict the change

in CTCF occupancy based on differential accessibility and methylation. Importantly, for

the set of peaks that pass the statistical significance threshold for differential binding

between the two cell lines (FDR < 0.1), the correlation between JAMS predictions and

experimental log-fc reaches as high as 0.84 (Fig. 3C), with JAMS being able to distin-

guish GM12878-specific from HeLa-S3-specific binding events with 95% accuracy.
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Hernandez-Corchado and Najafabadi Genome Biology          (2022) 23:151 Page 7 of 23



We note that many of the CTCF binding sites are differentially accessible between

GM12878 and HeLa-S3 (Fig. 3D), which may drive the differential binding predictions.

To specifically examine the role of differential methylation in driving cell type-specific

CTCF binding, we further limited our analysis to the set of peaks that had similar ac-

cessibility in both cell lines (Fig. 3D), and also removed all the JAMS predictor variables

corresponding to accessibility. We observed that this reduced JAMS model can still

predict differential CTCF binding among the peaks that are not differentially accessible

(r = 0.14 between predicted and observed log-fc across n = 2232 peaks, P-value < 2 ×

10−11; Fig. 3E). This correlation increases to 0.22 for the set of peaks that have high ac-

cessibility in both cell lines (Fig. 3E), suggesting that the effect of differential CpG

methylation is most noticeable when the putative CTCF binding site is accessible in

both cell lines. Further limiting this analysis to the peaks that have no flanking CpGs,

we found that differential intra-motif CpG methylation can predict differential CTCF

binding independent of regional methylation level (Additional file 1: Fig S6).

Overall, these analyses suggest that JAMS models can predict differential TF binding

across cell types, including differential TF binding events that are driven by changes in

the methylation of the putative binding sites. The ability of JAMS to predict cell type-

specific TF binding events further highlights its reliability in capturing the determinants

of TF binding using ChIP-seq data.

Systematic inference of the in vivo methyl-binding preferences of 260 TFs using JAMS

To identify TFs whose in vivo binding is positively or negatively affected by methy-

lation of intra-motif CpGs, we decided to apply JAMS to a comprehensive com-

pendium of ChIP-seq data for a wide range of TFs. We collected and uniformly

processed data from 2209 ChIP-seq and ChIP-exo experiments [17, 25, 31], cover-

ing the in vivo binding profiles of 604 TFs in six cell lines (Additional file 2: Table

S1), along with the WGBS and DNase-seq assays in those cell lines (Additional file

3: Table S2). On average, we identified ~ 60 k peaks per ChIP-seq experiment using

the permissive P-value threshold of 0.01 (Additional file 1: Fig S7). We then used

the peak tag counts to fit a JAMS model to each ChIP-seq experiment. We noticed

that the quality of the JAMS models, measured by the Pearson correlation between

the predicted and observed TF-specific signal, varied substantially across the exper-

iments, with correlations ranging from 0 to 0.8 (median 0.48; Additional file 1: Fig

S7). This variation may reflect a multitude of factors, including the ChIP-seq data

quality as well as the extent to which the TF signal can be explained by our model

specifications. We therefore decided to keep only a subset of high-confidence

models. Specifically, we selected at most one representative model per TF based on

the following criteria: (i) the model should have used at least 10,000 peaks for

training, (ii) Pearson correlation > 0.2 between the predicted and observed TF-

specific signal after cross-validation, (iii) Pearson correlation > 0.3 between the

known and JAMS-inferred sequence motif, (iv) and low contribution of the se-

quence to the background signal compared to the TF-specific signal (control-to-

pulldown ratio of the sequence coefficients mean < 0.4). As an example, in Add-

itional file 1: Fig S8, we show two JAMS models for BHLHE40, obtained from two

different ChIP-seq experiments, only one of which passes all the criteria mentioned
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above. Overall, we obtained high-confidence JAMS models for 260 TFs, spanning a

range of TF families (Fig. 4A and Additional file 4: Table S3).

After selecting one JAMS model per TF, we used the JAMS-inferred effects of methyla-

tion to classify the TFs according to their inferred methyl-binding preferences. We use a

notation similar to Yin et al. [5]. Specifically, we classified a TF as (a) methyl-minus if its

JAMS model included at least one significantly negative mCpG effect (FDR < 1 × 10−5),

(b) methyl-plus if the model included at least one significantly positive mCpG effect, (c)

mixed-effect if the model included both significantly positive and negative mCpG effects,

(d) no-effect if the JAMS motif included a CpG but there was no statistically significant

mCpG effect found by JAMS based on current data, (e) and no-CpG if the JAMS motif

did not included a prominent CpG site. Overall, we found 117 methyl-minus TFs, 16

methyl-plus TFs, four mixed-effect TFs, 67 TFs with no statistically significant mCpG ef-

fects, and 56 no-CpG TFs (Fig. 4B). In addition to the category of each TF, Additional file

4: Table S3 includes the intra-motif positions whose methylation was significantly (FDR <

10−5) associated with TF occupancy. We note that a large number of the TFs that we have

studied here belong to the C2H2-ZF family of proteins, which use a tandem array of zinc

fingers to interact with DNA. For these proteins, we have mapped the methyl-sensitive

binding site positions to the individual zinc finger domains that potentially interact with

them; these ZF annotations are also included in Additional file 4: Table S3, and schemat-

ically shown in Additional file 1: Fig S9.

To understand whether our JAMS-based classification captures known methyl-

binding preferences of TFs, we started by examining a few TFs whose methyl-binding

preferences have been extensively studied in vitro and in vivo, including CEBPB, NRF1,
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Fig. 4 Systematic application of JAMS. A Pie charts of the main TF families (left) and C2H2-ZF proteins
subfamilies (right) for TFs with at least one high-quality JAMS model. B Pie chart of the methyl-binding
preferences of TFs with at least one high-quality JAMS model. We obtained high-quality models for a total
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KAISO (ZBTB33), and MAX. Using protein-binding microarrays (PBMs), Mann et al.

have previously reported enhanced binding of CEBPB to methylated CpG-containing

sequences [2], consistent with methylation of a large fraction of CEBPB genomic bind-

ing sites in vivo [3]. The JAMS model for CEBPB (Fig. 4C and Additional file 1: Fig

S10) is concordant with these previous reports, showing that methylation of C6pG7 di-

nucleotide has a positive effect on CEBPB binding strength. This effect is in fact highly

reproducible and is present in three out of four JAMS models that we obtained using

different CEBPB ChIP-seq experiments. Another well-studied TF is NRF1, which has

been found to be sensitive to CpG methylation of DNaseI-hypersensitive sites in mur-

ine stem cells [10]. Moreover, Cusack et al. found that NRF1 preferentially binds to

unmethylated DNA even after accounting for changes in DNA accessibility caused by

the recruitment of HDACs to methylated CpGs through MBD proteins [9]. Consistent

with these reports, we found that methylation of C3pG4 and C9pG10 dinucleotides in

the NFR1 target sequence has a negative effect on its binding (Fig. 4C and Additional

file 1: Fig S10); these effects were consistent across all the cell lines we analyzed. Simi-

larly, JAMS was able to recover the known methylation preferences of KAISO, a well-

known mCpG-binding protein [16], and MAX, whose binding to the E-box sequence is

inhibited by CpG methylation in vitro [32] and in vivo [9] (Fig. 4C). We also found that

the JAMS models for CEBPB, MAX, and KAISO are transferable (Additional file 5:

Table S4) and able to predict differential binding across cell lines (Additional file 1: Fig

S11-13), using similar approaches as those discussed in the previous section for CTCF.

However, we observed a comparably limited performance for predicting the differential

binding of KAISO (Pearson correlation between 0.16 and 0.44 for KAISO differential

binding across different cell lines, compared to median Pearson correlation of 0.61 for

CEBP and MAX).

The above examples suggest that JAMS models are consistent with previously re-

ported methylation preferences of TFs. However, there are only a handful of TFs whose

methylation preferences have been validated in vivo. Therefore, to systematically evalu-

ate our JAMS-based classification of TFs, we compared our inferred methyl-binding

preferences with in vitro preferences obtained using methyl-SELEX and/or bisulfite-

SELEX [5]. Overall, 76 out of the 260 TFs that we studied here have methyl/bisulfite-

SELEX data (Fig. 4D). These included 44 TFs that we classified as methyl-minus based

on in vivo data; 29 of these TFs (~ 66%) were also identified as methyl-minus by

SELEX, and another 7 TFs (16%) were identified as mixed-effect. This suggests that our

approach has ~ 82% precision for identification of TFs that are negatively affected by

CpG methylation in at least one position in their target sequence (precision or positive

predictive value: ratio of true positives to all predicted positive cases). On the other

hand, out of 39 methyl-minus TFs found by SELEX, 31 were also classified as either

methyl-minus or mixed-effect by JAMS, suggesting that ~ 79% of in vitro-observed

methyl-minus effects can be captured using in vivo data. We also compared the repres-

sive intra-motif methylation positions that were identified by JAMS to those identified

by bisulfite-SELEX. Overall, 93% (28/30) of the intra-motif positions identified by JAMS

precisely matched a repressive intra-motif mCpG identified by bisulfite-SELEX (Add-

itional file 1: Fig S14).

Similarly, out of five JAMS-based methyl-plus TFs that have methyl/bisulfite-SELEX

data [5], four were classified as methyl-plus based on SELEX (Fig. 4D), suggesting a
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precision of ~ 80%. However, despite this high precision, only 5 out of 20 SELEX-based

methyl-plus TFs are identified as either methyl-plus or mixed-effect by JAMS—this

suggests that a relatively small fraction of in vitro methyl-plus effects can also be ob-

served in vivo. Nonetheless, we found 11 methyl-plus TFs that were previously unclas-

sified—this is in addition to 73 previously unclassified methyl-minus and one novel

mixed-effect TF, highlighting the ability of JAMS models in revealing novel TF methyl

preferences.

Figure 5A shows the distribution of different methyl preferences across main TF fam-

ilies. We noticed that a disproportionately large number of methyl-plus TFs belong to

the C2H2-ZF family (methyl preferences of these TFs are shown in Fig. 5B and Add-

itional file 1: Fig S15). More specifically, among the KRAB domain-containing members

of the C2H2-ZF family whose binding is significantly affected by methylation, ~ 24%

preferentially bind to methylated CpGs (Table 2), compared to only ~ 12% of non-

KRAB TFs (Fisher’s exact test P < 0.009, Additional file 6: Table S5). This is an intri-

guing observation, given that a majority of KRAB-ZF proteins evolved to specifically

bind and repress transposable elements, which largely reside in highly methylated gen-

omic regions [33]. It is notable that we observed this methyl-plus effect even though

we removed all repetitive genomic regions from our analysis (see “Methods”). Our ob-

servation suggests that many of the KRAB-ZF proteins preferentially bind to methyl-

ated instances of their target sequence, potentially allowing them to distinguish the

transposable elements from other genomic regions that contain their preferred binding

sequence. In fact, ~ 56% of all methyl-plus TFs that we identified are KRAB-ZF pro-

teins, suggesting that recognition of methylated transposable elements might have been

a primary force in the evolution of methyl-binding TFs. We note that, overall, JAMS

models were less predictive for KRAB-ZF proteins (Additional file 1: Fig S7), potentially

because for many of them a large fraction of the strongest binding sites overlap repeti-

tive elements and, therefore, were excluded from our analyses. Thus, relatively fewer
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KRAB-ZF proteins were included in our high-confidence set of JAMS models, and the

true fraction of methyl-plus KRAB-ZF proteins may be higher than our estimate.

Discussion
In this study, we built Joint Accessibility-Methylation-Sequence (JAMS) models to cap-

ture the relationship between TF binding and DNA methylation in vivo. Our approach

uses generalized linear models to express the TF occupancy as a function of DNA ac-

cessibility, sequence, and methylation at and around TF binding sites, while separating

the background from TF-specific signals. While generalized linear models have been

previously used to study the in vivo methyl-sensitivity of specific TFs (such as TP53

[34]), a combination of factors distinguishes our approach from those earlier studies,

including the ability to consider the confounding effect of DNA accessibility, ab initio

learning of the coefficients that connect the sequence to TF occupancy (together with

the effects of intra-motif methylation), and the use of an error model that allows for

overdispersion of observed read counts. These differences are key for the ability of

JAMS to identify intra-motif mCpG effects with high specificity. For example, we found

that DNA accessibility alone is more informative about CTCF occupancy than se-

quence and methylation combined, and excluding it from JAMS analysis results in

spurious detection of negative mCpG effects in several positions (Additional file 1: Fig

S16A-B). Similarly, using a binomial model (similar to [34]) instead of negative

Table 2 TFs with methyl-plus and mixed-effect methyl-binding preferences, as inferred by JAMS
using in vivo data. For mixed-effect TFs, both the position at which a positive methylation effect
was observed as well as the position with a negative methylation effect are indicated. See
Additional file 1: Fig S8 for motif logos

Protein Family JAMS call Effect of methylation by position SELEX call
[5]Positive Negative

CEBPB bZIP Methyl-plus 6 Methyl-plus

SCRT1 C2H2 ZF Methyl-plus 3 Methyl-plus

CEBPG bZIP Methyl-plus 6 Methyl-plus

ZBTB33 (KAISO) C2H2 ZF (BTB) Methyl-plus 5, 7 Methyl-plus

TCF7 HMG/Sox Methyl-plus 2 Methyl-minus

ZKSCAN1 C2H2 ZF (KRAB+SCAN) Methyl-plus 2

ZNF793 C2H2 ZF (KRAB) Methyl-plus 7

ZNF141 C2H2 ZF (KRAB) Methyl-plus 17

ZNF320 C2H2 ZF (KRAB) Methyl-plus 17

ZNF605 C2H2 ZF (KRAB) Methyl-plus 15

ZNF479 C2H2 ZF (KRAB) Methyl-plus 11

ZNF490 C2H2 ZF (KRAB) Methyl-plus 7

ZNF506 C2H2 ZF (KRAB) Methyl-plus 5

ZNF417 C2H2 ZF (KRAB) Methyl-plus 16

NR2F2 Nuclear receptor Methyl-plus 5, 8

TFAP4 bHLH Methyl-plus 7

SP1 C2H2 ZF Mixed-effect 5 8 Methyl-plus

USF1 bHLH Mixed-effect 7 5 Methyl-minus

USF2 bHLH Mixed-effect 7 5 Methyl-minus

NFYB NFYB/HAP3 Mixed-effect 9 13
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binomial results in promiscuous mCpG effects (Additional file 1: Fig S16C). By system-

atic application of JAMS to a large compendium of ChIP-seq datasets and comparison

to SELEX-based in vitro data [5], we showed the reliability of methylation preferences

identified by JAMS, with ~ 80% of methyl-plus and methyl-minus TFs found by JAMS

showing a concordant effect in vitro. In addition, we characterized the methylation

preferences of 128 TFs that were not previously studied by bisulfite- or methyl-SELEX,

revealing 73 novel methyl-minus and 11 novel methyl-plus TFs (Fig. 4D).

An intriguing observation from the comparison of in vivo JAMS models and in vitro

SELEX models (Fig. 4D) is that the methyl-binding capacity of TFs overall decreases

in vivo compared to in vitro: Most TFs that are methyl-plus in vitro become indifferent

to the methylation status of CpGs in vivo (11 out of 20) or even become methyl-minus

(4 out of 20); most TFs that are indifferent to methylation in vitro become methyl-

minus in vivo (4 out of 6), and most TFs that are methyl-minus in vitro also present

themselves as methyl-minus in vivo (29 out of 39). One possible explanation for this

shift toward methylation avoidance is the direct competition of TFs with MBD pro-

teins. While JAMS is able to capture the indirect effect of MBD proteins on DNA ac-

cessibility (through recruitment of chromatin modifiers), as well as potential MBD

recruitment through flanking mCpGs, it currently does not model the direct competi-

tion of TFs and MBD proteins for binding to intra-motif mCpG sites. This undetected

direct competition could affect the interpretation of our model parameters: methylation

coefficients obtained by JAMS models should be more accurately interpreted as the af-

finity of a TF toward mCpG sites “relative” to the affinity of other competing factors,

such as MBD proteins. Figure 6 schematically shows the most common scenarios that

may arise from this competition and their estimated frequency based on our JAMS-

SELEX comparison.

Accordingly, for the majority of in vitro methyl-plus TFs, their competition with

MBD proteins leads to their apparent indifference to methylation in vivo, resulting in
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Fig. 6 Schematic presentation of how competition with MBD proteins may affect TF binding. Each panel
shows how in vitro-observed mCpG preferences may present themselves in vivo in the presence of
competing mCpG-binding proteins such as MBDs. The percentages indicate the estimated frequency of
each scenario among CpG-binding TFs. For example, 80% (4 out of 5) of JAMS-based methyl-plus TFs that
have SELEX data show methyl-plus preference in vitro, and a total of 16 methyl-plus TFs are identified by
JAMS. Therefore, ~ 13 out of these 16 TFs are expected to be in vitro methyl-plus TFs that remain methyl-
plus in vivo, corresponding to ~ 6% (13 out of 204) of all CpG-binding TFs

Hernandez-Corchado and Najafabadi Genome Biology          (2022) 23:151 Page 13 of 23



equal recognition of methylated and unmethylated CpGs by these TFs—we have identi-

fied a total of 67 apparent methyl-indifferent TFs in vivo, ~ 60% of which is expected to

show some degree of mCpG preference in the absence of MBD proteins in vitro. On

the other hand, only the TFs with the strongest affinity toward methylated CpGs are

expected to outcompete MBD proteins and bind preferentially to mCpG sites in vivo—

our analysis has identified 16 such TFs (Table 2), including 11 novel methyl-plus TFs,

most of which belong to the C2H2-ZF class of proteins.

This trend toward methyl-minus effects can even be seen at the level of individual

binding site positions; for example, while in vitro studies have found that CTCF binding

is sensitive to methylation of the dinucleotide C2pG3 of its binding sequence [28], we

found that methylation of C12pG13 may have an additional negative effect on CTCF

binding in vivo. We note that the methylation of C2pG3 and C12pG13 are highly cor-

related. However, even among CTCF binding sites that do not contain a CpG dinucleo-

tide at position 2/3, methylation of C12pG13 is still negatively associated with CTCF

occupancy, suggesting that this association may be independent of C2pG3 methylation

(Additional file 1: Fig S17). Such novel intra-motif effects may reflect the functions of

in vivo factors such as MBD proteins, which are not included in most in vitro experi-

ments. However, we do not rule out the possibility that they may also represent direct

effects that have gone undetected in in vitro studies. For example, by re-examining pre-

viously published in vitro data [28], we found that methylation of C12pG13 may inhibit

the in vitro binding of CTCF to a subset of sequence variants that lack the canonical G

nucleotide in positions 10 and 12 (Additional file 1: Fig S18), suggesting context-

specific in vitro sensitivity of CTCF against mC12pG13.

We emphasize, however, that interpretation of intra-motif mCpG effects remains

challenging for TFs that, similar to CTCF, recognize binding sequences with multiple

CpGs. The in vivo methylation levels of such nearby CpGs are often highly correlated,

which poses a substantial challenge for deconvolving the effect of methylation of each

individual position. This is particularly the case for multi-zinc finger proteins such as

the KRAB-ZF family, whose binding motifs are often longer than other TF families.

Such long binding sites may impose additional difficulties for deconvolving the effect of

methylation of individual intra-motif CpGs, and it remains to be tested whether JAMS

inferences for this family have base pair resolution. Also, when DNA accessibility data

or regional methylation estimates are noisy, their confounding effect cannot be effect-

ively decoupled from the true effect of intra-motif CpG methylation. In such cases, spe-

cial attention needs to be given to the possibility of increased false positives in

identifying intra-motif mCpG effects. In addition, reliance on steady-state TF occu-

pancy data poses additional challenges for correctly modeling the determinants of

in vivo TF occupancy, especially for low-affinity binding sites [35]. While the vast ma-

jority of available datasets represent the steady-state binding profiles of TFs, modeling

how TF occupancy changes after in vivo modulation of TF concentration may provide

a more nuanced view of the determinants of TF specificity [34, 35].

Conclusions
This study represents, to our knowledge, the largest resource for exploring the in vivo

effect of methylation on TF binding. It suggests that preferential binding of TFs to

in vivo methylated CpGs is not rare, but also not as pervasive as it may appear from
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in vitro experiments. Instead, TF affinity for mCpGs could be often equilibrated in vivo

by the mCpG-binding activity of other proteins such as MBDs, resulting in the appar-

ent methylation-agnostic activity of ~ 20% of CpG-binding TFs.

Methods
Methods overview

To understand the relationship between DNA methylation and TF binding, we began

by retrieving and analyzing WGBS, ChIP-seq, and DNase-seq data from different TFs

in several cell lines. We developed a method to jointly model these data sets to predict

TF-specific binding and benchmarked it on CTCF ChIP-seq data in HEK293 cells. We

expanded our CTCF studies by obtaining differential binding sites of CTCF between

different cell lines, and examined whether, using our method, we can predict differen-

tial binding that was caused by DNA methylation changes. Finally, we applied our

method to a comprehensive collection of ChIP-seq data to systematically study the

in vivo effect of DNA methylation on TF binding.

ChIP-seq data processing, peak calling, and peak signal quantification

We limited our analysis to ChIP-seq experiments performed in HepG2, K562, HEK293,

GM12878, and HeLa-S3 cell lines, given the availability of high-depth WGBS and

DNase-seq data for these cell lines. ChIP-seq and ChIP-exo raw reads were retrieved

from four main sources: ENCODE [25, 36], Najafabadi et al. [37], Schmitges et al. [17],

and Imbeault et al. [31]. ENCODE data were downloaded from ENCODE project web-

site (https://www.encodeproject.org/experiments/), while the other data were down-

loaded from GEO (accession numbers GSE58341, GSE76494, and GSE78099). A total

of 2209 ChIP-seq experiments were analyzed, covering 604 TFs and six cell lines (Add-

itional file 2: Table S1).

Raw reads were aligned to the human reference genome (GRCh38) with bowtie2 (ver-

sion 2.3.4.1) using the “--very-sensitive-local” mode. Mapped reads with mapping qual-

ity score smaller than 30 were removed using samtools (version 1.9) [38]. ChIP-seq

peaks were called using MACS (version 1.4) [39, 40] with a permissive P-value thresh-

old of 0.01. We used this permissive P-value threshold to obtain a range of TF binding

signals, which our method uses to quantitatively model TF occupancy. We also in-

cluded negative peaks, i.e., peaks obtained by swapping the treatment with the control

experiments, to enable proper modeling of the background signal. In the end, for each

ChIP-seq experiment, this process resulted in a list of peaks covering a wide range of

pulldown or control (background) signal strengths, along with their associated read

counts. The complete set of uniformly processed peaks used in this study can be

accessed via Zenodo (DOI: 10.5281/zenodo.5573261).

WGBS data processing and DNase-seq data retrieval

Raw reads from Whole-Genome Bisulfite Sequencing (WGBS) of six cell lines were re-

trieved from ENCODE and GEO (see Additional file 3: Table S2 for accession num-

bers). Raw reads were trimmed based on their quality (phred33 ≥ 20) with TrimGalore

(version 0.6.4) [41]. Paired reads were aligned to the human reference genome hg38

[42] using bismark (bowtie2 mode, version 0.22.2), allowing one mismatch during
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alignment. Reads were deduplicated by removing those that aligned to the same gen-

omic position (bismark:deduplicate_bismark). Methylation calls were then extracted, ig-

noring the first 2 bps from the 5′ end of read 2 (bismark:bismark_methylation_

extractor). A genome-wide coverage report with methylated and unmethylated read

counts was then generated (bismark:coverage2cytosine). Finally, a bigwig file was gener-

ated for unmethylated and methylated counts (bedGraphToBigWig) [43].

For DNase-seq data, read depth-normalized bigwig files representing DNase-seq sig-

nal were retrieved from ENCODE (see Additional file 3: Table S2 for accession

numbers).

Formatting and preprocessing of data for JAMS

To retrieve the sequence, DNA accessibility, and DNA methylation to train our

model, we focused on the positive and negative ChIP-seq peak regions that did

not fall within endogenous repeat elements, since the homology of repeat ele-

ments can confound the modeling of ChIP-seq data based on sequence [37]. This

was done by removing peaks that overlapped any repeat regions, as defined by

RepeatMasker [42, 44].

To model the effect of sequence and epigenetic factors on TF binding using our

method, it is necessary to align the peaks in order to obtain an optimal “view” of each

peak, followed by construction of a design matrix for downstream GLM analysis (simi-

lar to the procedure described previously [45]). To obtain this optimal view, we used

the known motif of each TF, in the form of position frequency matrices (PFMs), to

search for the most likely TFBS within the 100-bp range of the peak summit. PFMs

were obtained from CIS-BP [20] and were augmented by de novo motifs identified by

RCADE2 [46, 47] for the C2H2-ZF family of TFs as described in later sections. CIS-BP

contains more than one PFM per TF, as they are derived from different experimental

techniques. We selected PFMs exclusively derived from in vitro experiments, in order

to avoid the confounding effects present in vivo. We prioritized, in descending order,

PFMs from SELEX, Selective microfluidics-based ligand enrichment followed by se-

quencing (SMiLE-seq), and Protein-Binding Microarrays (PBM). We used AffiMx [48]

to identify the best motif match in each peak sequence. This process was uniformly ap-

plied to all peaks, including the negative ChIP-seq peak set.

Once the best motif hit in each peak was identified, we extracted the sequence and

nucleotide-resolution methylation profile at the motif hit as well as the flanking regions

(20 bp) around the motif hit (the average regional methylation and base composition in

the flanking 20-bp regions were used as covariates in the model). Sequences were re-

trieved from the reference genome hg38 using bedtools:getfasta [42, 49]. Methylated

and unmethylated read counts at each position were retrieved from the WGBS bigwig

files using bwtool [50], and the fraction of methylated reads per position was directly

used in the model.

Similarly, normalized DNA accessibility was extracted from the motif hit region and

500 bp upstream and downstream of the motif hit from the DNase-seq bigwig files.

ChIP-seq read counts were extracted from the control and pulldown experiments for

the ± 400 bp region surrounding the motif match using bedtools:multicov (MAPQ score

> 30). (Fig. 4C, bottom) [49].
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We emphasize that while a known motif of each TF was used to identify an offset for

each peak and align the peak regions, this process is not expected to confound the se-

quence features learned by JAMS, since it is uniformly applied to all peaks regardless of

the signal strength. The TF motifs themselves were also not used by JAMS for model

fitting, and the sequence features that are predictive of ChIP-seq signal were learned de

novo from the aligned peaks, as described below.

Implementation of JAMS

Our method creates a joint accessibility-methylation-sequence model (JAMS model)

for each ChIP-seq experiment, in which the ChIP-seq signal of each peak is explained

as a function of accessibility, methylation, and sequence at that peak. Consider the k ×

m matrix X, which represents the value of m predictive features at k genomic positions

(i.e., peaks). These m features include those related to accessibility (A), intra-motif

methylation (M), sequence (S), regional sequence composition (RS), and regional

methylation (RM):

X ¼ XAXMXSXRSXRM½ �

JAMS models the logarithm of TF occupancy at each of the k peaks as a linear function

of the matrix X:

logμ f ¼ X � β f

Here, μf is the vector of the binding occupancy for transcription factor f across k

peaks, X is the k × m feature matrix described above, and βf is the vector of m co-

efficients that describe the effect of each of the m features on the TF binding oc-

cupancy (matrices are denoted with bold capital letters, and vectors with bold

lowercase letters).

Similarly, the background ChIP-seq signal across the peaks is also modeled as a func-

tion of X:

logμb ¼ X � βb

Here, μb represents the background signal strength across k peaks, and βb is the vec-

tor of m coefficients that describe the effect of each of the m features on the back-

ground signal.

In a ChIP-seq experiment, the expected control (background) read counts at each

peak are a function of the background signal multiplied by the library size. Therefore,

the logarithm of control reads can be modeled as:

logλc ¼ logμb þ sc ¼ X � βb þ sc

Here, λc is the vector of expected (average) control read counts across the k peaks,

and sc is an experiment-specific size factor that can be interpreted as the logarithm of

sequencing depth for the control library.

The expected pulldown read counts in a ChIP-seq experiment, however, are a func-

tion of both the background and the TF signal, multiplied by the library size.

Therefore:
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logλp ¼ logμb þ logμ f þ sp ¼ X � βb þ X � β f þ sp

Here, λp is the vector of expected pulldown read counts across the k peaks, and sp
can be interpreted as the logarithm of sequencing depth for the pulldown library.

While these equations describe the expected control and pulldown read counts, the

actual observed read counts are probabilistic observations that may deviate from these

expected values. Here, we model the read counts as observations from negative bino-

mial distributions [51] whose mean is given by the equations above, with a shared dis-

persion parameter across the peaks:

nc ¼ NB λc;φð Þ
np ¼ NB λp;φ

� �

Here, nc and np are the vectors of observed control and pulldown read counts across

the k peaks, respectively, and φ is the dispersion parameter. The equations above allow

us to jointly model the control and pulldown experiments as a function of X. We use

the glm.nb function in R for this purpose and fit a model of the form n ~ XX + t + XX:

t, where n is an R vector that concatenates the observed control and pulldown read

counts (with length 2 k), XX is the result of duplicating matrix X, i.e., XX = rbind(X,X),

and t is a binary vector of length 2 k indicating whether the observed read count comes

from the control experiment (0) or from the pulldown experiment (1). The coefficients

returned by the glm.nb function for XX correspond to βb in the equations above, and

the coefficients for XX:t correspond to βf. The glm.nb also returns the standard error of

mean and a P-value for each of these coefficients, which we use to determine the statis-

tical significance.

Constructing the matrix X

Sequence, DNA methylation and DNA accessibility are used as the predictor variables,

which are included in the matrix X. We used one-hot encoding for the sequence over

the TFBS. Methylated and unmethylated read counts over the motif were used to calcu-

late the methylation percentage at each position. If the average coverage of methylation

and unmethylated reads over the motif is less than 10 counts, the peak is removed.

Average DNA accessibility was calculated for bins of 200 bp (10 bins) plus one bin for

the TFBS region itself, and then logarithm of DNA accessibility was calculated; a pseu-

docount equivalent of 1% of the smallest value was used to allow for log transformation

of the data. Average methylation percentage and sequence composition of the flanking

regions were also used as predictors.

The source code for JAMS, as well as the complete set of JAMS models generated in

this study, is available at https://github.com/csglab/JAMS. Additional data, including

the JAMS motif logos and the data used to train the JAMS models, are deposited to

Zenodo (DOI: 10.5281/zenodo.5573261).

Differential binding analysis

To calculate differential TF binding between cell lines, we first identified CTCF,

CEBPB, MAX, and ZBTB33 ChIP-seq experiments from ENCODE that had at least

two biological replicates per cell line (Additional file 7: Table S6), and retrieved the

pulldown and control experiment data. After aligning and peak calling, we defined a

Hernandez-Corchado and Najafabadi Genome Biology          (2022) 23:151 Page 18 of 23

https://github.com/csglab/JAMS


unified list of peaks that were present in at least one sample. Peaks that were present in

more than one sample and had summits within 100 bp of each other were merged, as

they likely represent the same TF binding site. Then, the best motif match within 100

bp of each summit was identified [48]. We extracted ChIP-seq read counts present

within a 400-bp range from the motif hit in the pulldown and control experiments and

created a count matrix.

We used DESeq2 [52] to compare the pulldown-to-control ratio between pairs of cell

lines, limiting to comparisons that included only data from the same lab. The DESeq-

DataSetFromMatrix function from DESeq2 was used to create a DESeqDataSet object,

followed by fitting a model of the form ~s + c:t, where s is a categorical variable repre-

senting the sample/replicate (shared between pairs of control and pulldown experi-

ments), c is a binary variable representing the two different cell lines, and t is a binary

variable denoting whether the read count corresponds to the control experiment (0) or

the pulldown experiment (1). After fitting the DESeq2 model, the coefficient for c:t cor-

responds to the log2 fold changes. Significant differentially bound peaks (FDR < 0.1)

were identified for every pair of cell lines, excluding cell line pairs whose ChIP-seq ex-

periments were done in different laboratories.

Inference of PFMs for C2H2-ZF proteins using RCADE2

We inferred position frequency matrices (PFMs) for canonical C2H2 zinc finger pro-

teins using RCADE2 [46, 47]. RCADE2 uses the protein sequence, the DNA sequence

of the ChIP-seq peaks, and a previously computed machine learning-based recognition

code to predict the DNA-binding preferences of C2H2-ZFPs. The protein sequences

for these TFs were retrieved from UniProt [53]. We focused on the top 500 ChIP-seq

peaks (sorted by P-value) that did not fall within endogenous repeat elements (EREs)

[42, 44]. The DNA sequence of the ± 250 region around the peak summits for the top

500 non-ERE peaks along with the protein sequence was provided as input to RCAD

E2, and the optimized motif was used to augment the CIS-BP motifs.
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